Introduction to BitTorrent

Arvid Norberg
arvid@cs.umu.se
http://libtorrent.net

Distributed systems C, TDBC85, Umed University, Fall 2006

mailto:arvid@cs.umu.se

Bittorrent

e [ntroduction

o Efficiency & Reliability
 The incentive mechanism
e Trackerless with DHT

Introduction

e Bittorrent is a system for efficient and
scalable replication of large amounts of
static data

- Scalable - the throughput increases with the
number of downloaders

— Efficient - it utilises a large amount of available
network bandwidth

Introduction

e The file to be distributed is split up in pieces
and an SHA-1 hash is calculated for each
piece

012.

» 18cfbe2d7a920d73e3bc2a4b9c0523e5£061437d8f6e
» 81f2437ee85c52a29037£73e871d371£31d34b901387
> 4ba723d98fe792358da9f01ef3c5a24965fe72ed6613

Introduction

A metadata file (.torrent) is distributed to all
peers

— Usually via HTTP
e The metadata contains:

- The SHA-1 hashes of all pieces
- A mapping of the pieces to files
— A tracker reference

Introduction -

 The tracker is a central server keeping a list of
all peers participating in the swarm

e A swarm is the set of peers that are
participating in distributing the same files

e A peer joins a swarm by asking the tracker for a
peer list and connects to those peers

Introduction

H BN
Tracker D

HEE B N [[

i | |

NEEE O P
| |

| N HEEEN

TR

Tracker

Introduction
D T [[]
B

Goals

e Efficiency
- Fast downloads
e Reliablility
— Tolerant to dropping peers
— Ability to verify data integrity (SHA-1 hashes)

Efficiency ens

e Ability to download from many peers yields fast
downloads

 Minimise piece overlap among peers to allow
each peer to exchange pieces with as many
other peers as possible

Plece overlap

Peer 1
Peer 2
Peer 3
Peer 4

e Small overlap

— Every peer can
exchange pieces with
all other peers

- The bandwidth can be
well utilised

e Big overlap

- Only a few peers
can exchange
pieces

-~ The bandwidth is
under utilised

Plece overlap

e To minimise piece overlap:
- Download random pieces

— Prioritise the rarest pieces, aiming towards uniform
piece distribution

Reliability

e Be tolerant against dropping peers

- Each dropped peer means decreased piece
availability

e Maximise piece redundancy
- Maximise the number of distributed copies

Distributed copies Eas

e The number of distributed copies is the
number of copies of the rarest piece

e.g.
Peer 1
Peer 2

Peer 3
Peer 4

Distributed copies = 2 Distributed copies = 1

Distributed copies

 To maximise the distributed copies, maximise
the availability of the rarest pieces

e To increase the availability of a piece, download
it

e To maximise the distributed copies:
- Download the rarest pieces first

Rarest first e

e The piece picking algorithm used in Bittorrent is
called rarest first

e Picks a random piece from the set of rarest
pieces

 No peer has global knowledge of piece
availability, it is approximated by the avalilibility
among neighbours

Rarest first -

* Pick a random piece from the set of rarest
pieces {2, 3}

e [gnore pieces that we already have

Piece Pieces
0123435 0
>
Us =123
s 2 1
Peer 1 s 3 4
>
Peer 2 < 4
\J
Peer 3

The incentive to share

e All peer connections are symmetric
e Both peers have an interest of exchanging data

e Peers may prefer to upload to peers from whom
they can download

- Leads to slow starts
— Fixed in a recent extension

The incentive to share

e There is a loose connection between upload
and download speed

e Each peer has an incentive to upload

Trackerless torrents

e Common problems with trackers
- Single point of failure
- Bandwidth bottleneck for publishers
e Solutions

— Multiple trackers
— UDP trackers
— DHT tracker

DHT distributed hash table *=-

e \Works as a hash table with sha1-hashes as
keys

 The key is the info-hash, the hash of the
metadata. It uniquely identifies a torrent

e The data is a peer list of the peers in the
swarm

DHT distributed hash table *=-

e Each node is assigned an ID
- in the key space (160 bit numbers)

e Nodes order themselves in a defined
topography

- Makes it possible to search for Ids by traversing the
node topography

o Bittorrent uses kademlia as DHT

Kademlia bootstrap

e Each node bootstraps by looking for its own ID

— The search is done recursively until no closer nodes
can be found

- The nodes passed on the way are stored in the
routing table

— The routing table have more room for close nodes
than distant nodes

Kademlia routing table =
Our I(lg)de-id Node distance
Node buckets

e Each node knows much more about close
nodes than distant nodes

— The key space each bucket represents is growing
with the power of 2 with the distance

- Querying a node for a specific ID will on average
halve the distance to the target ID each step

Kademlia routing table =

e The distance metric is defined as XOR

- In practice, the distance is 2 to the power of the
iInverse of the size of the common bit prefix

100110110011101010110001
100110110010101110101100

Common prefix = 11 Distance > 2"

Kademlia routing table

160 bit key space

>

Our node-1d

(SI949] 6S1 99 pInoYs) OUBISI(J

Kademlia search

e Each search step increases the common bit
prefix by at least one

— Search complexity: O(log n)

Kademlia distributed tracker =

e Each peer announces itself with the distributed
tracker

— by looking up the 8 nodes closest to the info-hash
of the torrent

- And send an announce message to them

- Those 8 nodes will then add the announcing peer to
the peer list stored at that info-hash

Kademlia distributed tracker >=-

e A peer joins a torrent by looking up the peer list
at a specific info-hash

— Like a search but nodes return the peer list if they
have it

Kademlia distributed tracker =

e 8 nodes is considered enough to minimise the
probability that all of them will drop from the
network within the announce interval

- Each announce looks up new nodes, in case nodes
have joined the network with Ids closer to the info-
hash than a previous node

