
Introduction to BitTorrent

Arvid Norberg
arvid@cs.umu.se
http://libtorrent.net

Distributed systems C, TDBC85, Umeå University, Fall 2006

mailto:arvid@cs.umu.se

Bittorrent

● Introduction
● Efficiency & Reliability
● The incentive mechanism
● Trackerless with DHT

Introduction

● Bittorrent is a system for efficient and
scalable replication of large amounts of
static data
– Scalable - the throughput increases with the

number of downloaders
– Efficient - it utilises a large amount of available

network bandwidth

Introduction

● The file to be distributed is split up in pieces
and an SHA-1 hash is calculated for each
piece

0 1 2 . . .

18cf5e2d7a920d73e3bc2a4b9c0523e5f061437d8f6e
81f2437ee85c52a29037f73e871d371f31d34b901387
4ba723d98fe792358da9f01ef3c5a24965fe72ed6613
.
.
.

Introduction

● A metadata file (.torrent) is distributed to all
peers
– Usually via HTTP

● The metadata contains:
– The SHA-1 hashes of all pieces
– A mapping of the pieces to files
– A tracker reference

Introduction

● The tracker is a central server keeping a list of
all peers participating in the swarm

● A swarm is the set of peers that are
participating in distributing the same files

● A peer joins a swarm by asking the tracker for a
peer list and connects to those peers

Introduction

Tracker

Introduction

Tracker

Goals

● Efficiency
– Fast downloads

● Reliability
– Tolerant to dropping peers
– Ability to verify data integrity (SHA-1 hashes)

Efficiency

● Ability to download from many peers yields fast
downloads

● Minimise piece overlap among peers to allow
each peer to exchange pieces with as many
other peers as possible

Piece overlap

Peer 1

Peer 2

Peer 3

Peer 4

● Small overlap
– Every peer can

exchange pieces with
all other peers

– The bandwidth can be
well utilised

● Big overlap
– Only a few peers

can exchange
pieces

– The bandwidth is
under utilised

Piece overlap

● To minimise piece overlap:
– Download random pieces
– Prioritise the rarest pieces, aiming towards uniform

piece distribution

Reliability

● Be tolerant against dropping peers
– Each dropped peer means decreased piece

availability
● Maximise piece redundancy

– Maximise the number of distributed copies

Distributed copies

● The number of distributed copies is the
number of copies of the rarest piece
e.g.

Peer 1

Peer 2

Peer 3

Peer 4

Distributed copies = 2 Distributed copies = 1

Distributed copies

● To maximise the distributed copies, maximise
the availability of the rarest pieces

● To increase the availability of a piece, download
it

● To maximise the distributed copies:
– Download the rarest pieces first

Rarest first

● The piece picking algorithm used in Bittorrent is
called rarest first

● Picks a random piece from the set of rarest
pieces

● No peer has global knowledge of piece
availability, it is approximated by the availibility
among neighbours

Rarest first

● Pick a random piece from the set of rarest
pieces {2, 3}

● Ignore pieces that we already have

Us

Peer 1

Peer 2

Peer 3

0 1 2 3 4 5
Piece

Av
ai

la
bi

lit
y 0

1
2
3
4

2 3
1
4

Pieces

The incentive to share

● All peer connections are symmetric
● Both peers have an interest of exchanging data
● Peers may prefer to upload to peers from whom

they can download
– Leads to slow starts
– Fixed in a recent extension

The incentive to share

● There is a loose connection between upload
and download speed

● Each peer has an incentive to upload

Trackerless torrents

● Common problems with trackers
– Single point of failure
– Bandwidth bottleneck for publishers

● Solutions
– Multiple trackers
– UDP trackers
– DHT tracker

DHT distributed hash table

● Works as a hash table with sha1-hashes as
keys

● The key is the info-hash, the hash of the
metadata. It uniquely identifies a torrent

● The data is a peer list of the peers in the
swarm

DHT distributed hash table

● Each node is assigned an ID
– in the key space (160 bit numbers)

● Nodes order themselves in a defined
topography
– Makes it possible to search for Ids by traversing the

node topography
● Bittorrent uses kademlia as DHT

Kademlia bootstrap

● Each node bootstraps by looking for its own ID
– The search is done recursively until no closer nodes

can be found
– The nodes passed on the way are stored in the

routing table
– The routing table have more room for close nodes

than distant nodes

Kademlia routing table

● Each node knows much more about close
nodes than distant nodes
– The key space each bucket represents is growing

with the power of 2 with the distance
– Querying a node for a specific ID will on average

halve the distance to the target ID each step

Node distanceOur node-id

Node buckets

Kademlia routing table

● The distance metric is defined as XOR
– In practice, the distance is 2 to the power of the

inverse of the size of the common bit prefix

100110110011101010110001
100110110010101110101100

Common prefix = 11 Distance ≥ 213

Kademlia routing table
160 bit key space

Our node-id

D
istance (should be 159 levels)

Kademlia search

● Each search step increases the common bit
prefix by at least one
– Search complexity: O(log n)

Kademlia distributed tracker

● Each peer announces itself with the distributed
tracker
– by looking up the 8 nodes closest to the info-hash

of the torrent
– And send an announce message to them
– Those 8 nodes will then add the announcing peer to

the peer list stored at that info-hash

Kademlia distributed tracker

● A peer joins a torrent by looking up the peer list
at a specific info-hash
– Like a search but nodes return the peer list if they

have it

Kademlia distributed tracker

● 8 nodes is considered enough to minimise the
probability that all of them will drop from the
network within the announce interval
– Each announce looks up new nodes, in case nodes

have joined the network with Ids closer to the info-
hash than a previous node

